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~ LETTER TO THE EDITOR 

SU,(l, 1) description of vibrational molecular spectra 

Dennis Bonatsost, E N Argyrest and P P RaychevS 
t Institute of Nuclear Physics, NCSR 'Demokritos', GR-15310 Aghia Paraskevi, Attiki, 
Greece 
$ Institute for Nuclear Research and Nuclear Energy, 1784 Sofia, Bulgaria 

Received 28 January 1991 

Abstract. The SU,(I, I )  quantum algebra is used for the description ofvibrational spectra 
of diatomic molecules, for which SU(1, l )  is used in the classical approach. While in the 
classical case only the first two terms of the empirical Dunham expansion occur, in the 
quantum case all terms are obtained. The improved description of the empirical data is 
obtained with q being a phase (and not a real number), in agreement with the situation 
occurringinthe qrotor(having the symmetry SU,(Z)), used forthe descriptionofrotational 
spectra of molecules and nuclei. 

Quantum algebras [l-51, which mathematically are Hopf algebras [6], have been 
introduced with the aim of solving the quantum Yang-Baxter equation [7]. More 

the quantum harmonic oscillator [840] has initiated much work in this field [ll-131. 
The S0,(3) quantum algebra has been found useful in describing the q-deformed 
spin-1 Heisenberg chain [14], while the q-rotor (the Hamiltonian of which is propor- 
tional to the second-order Casimir operator of SU,(2)) has been found suitable for 
the description of rotational spectra of deformed nuclei [ 15, 161, superdeformed nuclei 
[I?! axd dia:o-ic mc!ecu!es [IS!. The succecs of the q=:ctcr in describixg ro ta tha!  
spectra has been understood [16] to be due t o  its equivalence to the variable moment 
of inertia-(vMI) model 1191. 

On the other hand, the Morse potential [20] ,  which offers a widely accepted 
description of vibrational spectra of diatomic molecules [Zl], has been known to have 
the symmetry SU( 1, 1) [22-281. Vibrational spectra are then described by a Hamiltonian 
which is propofiiana! !o the second-order Casimir operator of FU( I, I). !! is therehre 
of interest to check the consequences and the physical content of generalizing SU( 1 , l )  
into the quantum algebra SU,(l, 11, which is already known [29,30]. 

In the classical case [28] the SO(2,l)  generators satisfy the commutation relations 

re,=en;;y, the of the su,;;; in teriiij of the q-ana;ogue of 

K+ = K ,  +iK, K -  = K, -iK, K, = K ,  (2) 

one obtains the SU(1, 1) commutation relations 

[ K , ,  K,1= * K &  [ K + ,  K_]=-2K, .  (3) 
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The generators of SU(1, 1) accept the following boson representation [24] 

K ,  = a:a: K _ = a , a 2  K ,  =$(a:a ,+a:a ,+  1)  (4) 
where a:, a , ,  a:, a2 satisfy usual boson commutation relations. 

The second-order Casimir operator of SO(2, I )  is [28] 

CJSO(2, l ) ]  = - ( K : + K : -  K i ) .  (5 )  
If N is the number of excitation quanta given to the system (which is equal to the 
total number of bosons in the case of the boson representation) and U is the vibrational 
quantum number, the eigenvalues of the Casimir operator are given 

C2[S0(2, 1)]1 Nw).=$w(w + 2)INo) (6) 

where the quantum number w is given by 

u = f ( N - o ) .  (7) 

N is related to the maximum number of vibrational states by 

N = 2u,,, or N = 2u,,,+ 1. (8) 

The vibrational spectrum is given by 

(9 )  

where by ( )  we denote the eigenvalue of the enclosed operator. Using (7) this can be 
rewritten as 

A 
4 E (  N, W )  Eo-A(C,[S0(2, I ) ] ) =  Eo-- W ( W  +2)  

N2- 1 
E (  N, U) = E, - A :+AN( v + f )  -A (  U +f)'. (10) 4 

Rotational-vibrational molecular spectra are usually described in terms of the 
Dunham expansion [31,32] 

€(U, J )  =I Y , ~ ( U + ~ ) ' ( J ( J + ~ ) ) *  (11) 
ik 

where I is the angular momentum and Kk are the Dunham coefficients, which are 
fitted to experiment. (For empirical values of Dunham coefficients forseveral molecules 
see [33].) Ignoring rotation (i.e. ignoring the rotational bands built on  the vibrational 
bandheads) one obtains the vibrational spectrum 

E (  U) = 1 Yj"( U+$)'. (12) 

We remark that (10) corresponds to the first two non-vanishing powers of (U+$) 
contained in the Dunham expansion. The same result is obtained by solving [34] the 
Schrodinger equation for the Morse potential [20]. It is also obtained in the O(4) limit 
or the vibron model [35] for diatomic molecules, which has been extended to triatomic 
molecules [36,37] and to higher-order terms [38]. The ratio Y20/ Y,,(the anharmonicity 
constant [22]) is in the present case proportional to 1/N, a result similar to the one 
obtained in the vibron model 1351. . .  

In the quantum case, the generators of SU,(I, 1) satisfy the commutation relations 
[29,301 
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where q-numbers are defined by 

If q is real (q =e: where T is real), q-numbers take the form 

sinh( T X )  

[ X I = =  SL'11,\7, 

while in the case that q is a phase (q =e" with 7 real), q-numbers are 

sin(rx) 
[XI  =- 

sin(T) 

In the limit q +  1 ,  relations (13) tends to the classical case (3). 
The generators of SU,(l ,  1) accept the following boson representation [29,30] 

K ,  = a:a: 

aiai -qajai=q-Nc 

K- = ala2 KO = f (  N, + N2 + 1)  

where the bosons a t ,  ai ( i  = 1 ,2 )  satisfy the relation 
+ +  

and 
+ +  

[ N j ,  ai  ] = a i  [ N j ,  ai] = -ai. 

The second-order Casimir operator of SU,( l ,  1) is [30] 

CJSU,,(l, l ) ]  = [ K o ] [ K o -  11-  K+K- [KJ[Ko+l] - K K +  

its eigenvaiues are given in [3oj as 

C,[SU,(L ~)IlKd=rKIrK- IIIKCL) 

where 

1 +In, - n21 1 + n ,  + n2 
K =  P =  

since the basis has the form l ~ p ) = I n ~ ) l n J ,  with [30] 

~ 2 - 

where the definition [n]! = [1][2]. . . [n] holds. The vibrational spectrum is given by 

(24) H = E,-AC,[SU,( 1,  I)]. 

Using the relation In ,  - nzJ = w + 1 one obtains 

E ( N , w ) = E , - A  - - [;K21 
which in the limit q + 1 tends to (9).  Using, further, (7) one has 

which is the q-generalization of (IO) 
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It is interesting to check how (26) is related to (IO) and to the Dunham expansion 
(12). This can he done by replacing the q-numbers in (26) by their equals from (15) 
(or (16)), subsequently taking the Taylor expansions of the hyperbolic (or 
trigonometric) functions, collecting together terms containing the same power of ( U +f), 
and finally summing up  the coefficients of each power of (U+$). In the case of real q 
the final result is 

A 
sinh(T) 

E (  N, U )  = Eo+- [ -t(COSh(T) -COSh(TN))+ T sinh(TN)( u + f )  

-7’ COSh(TN)(U+$)2+fT’ s i n h ( ~ N ) ( u + f ) ’ - f ~ ~  cosh(rN)( U+$)“ 

(27) +d 2 sinh(TN)(u+f)’-&T6 . cosh(TN)(u+f)6+. . .I  
while in the case of q being a phase the final result is 

E(  N, U) = E,+? [-$(cos(.) -cos(TN)) + T sin(TN)(u + f )  
A 

sm(T)’ 

+&T5 s i n ( ~ N ) ( u + $ ) ~ - & ~ ~  COS(TN)(U+f)6+. . .]. 
- T~ COS(TN)( U + f ) 2 + ( - $ ) T ’  Sin(TN)(U+t)’ - ( - f ) ~ ~  COS( TN)(  U+;)* 

(28) 
The following remarks can now be made: 
(i) Both (27) and (28) reduce to (10) in the limit q + l  (7’0). 
(ii) While (10) contains only the first two non-vanishing powers of (U+$), (27) 

and (28) contain all possible powers. Thus (27) and (28) correspond to the full Dunham 
expansion (12). However, while the Y,, coefficients in (12) are not related to each 
other, their counterparts in (27) (or (28)) are interrelated, since they all depend on T 

and N. 
(iii) The anharmonicity constant (i.e. the ratio Y20/ Y,d,  which in the classical case 

(10) is fixed to -I/N, is here -T/Sinh(TN) (in (27)) or -T/sin(TN) (in (28)). Therefore 
the anharmonicity constant is not fixed by N (or, equivalently through (8), by umaX). 
This extra freedom is useful when one attempts to fit experimental data, as will be 
demonstrated below. 

We now attempt the briefest possible comparison with experimental data. We 
consider the case of H2 in its X ’2: state, which has been considered in the case of 
the vibron model [35] as well. Since in this state of H2 it is experimentally known that 
umaX = 14, from (8) one finds that N = 28 or N = 29. As in the case of the vibron model 
[35], we consider N = 29. ( N  = 28 also gives very similar results.) As data we use the 
results for the vibrational levels obtained through the Rydberg-Klein-Rees (RKR) 
method [39] reported in [40]. We first fitted the data using the classical expression 
(10). When attempting to use (27) one is driven to failure, while (28) gives a result 
much better than (lo), as can be seen in table 1,  where the quality ofthe fits is indicated 
by the quantity 

u = J F  (29) 

where M is the number of states used in the fit. Thus the data indicate that g should 
he a phase, and not a real number. This conclusion is the same as the one drawn from 
the comparison of the q-rotor (having the symmetry SU,(2)) with the rotational spectra 
of deformed [15, 161 and superdeformed [I71 nuclei, as well as to the rotational spectra 
of diatomic molecules [IS]. It should also be pointed out that the parameter T remains 
small in all cases. 
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Table 1. Vibrational spectra i n  the X 'Z: state of H,. U is the vibrational quantum number, 
E, ( R m )  are the empirical dava [40] (in units of cm-I), E, (th-q) are the theoretical 
predictions in the quantum case (261, while E, (th-c) are the predictions in the classical 
case ( IO) .  The parameters of the fits are shown i n  the lower part of the table. In both cases 
N has been fired to 29, EO that only Eo, A and T have been used as free parameters. U is 
the RMS deviation defined in (29). 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
I I  
12 
I3 
14 

N 
€0 

A 
7 

U 

2 170 
6331 

10 257 
13 952 
17 420 
20 662 
23 676 
26 458 
29 001 
31 294 
33 320 
35 057 
36 472 
37 521 
38 143 

2 599 
6 255 
9 936 

13 586 
17 147 
20 563 
23 782 
26 753 
29 429 
31 768 
33 734 
35 297 
36 430 
37 117 
37 348 

29 
37 290 

230.3 

369 
0.0626 

773 
5 684 

I O  232 
14416 
18 235 
21 692 
24 784 
27512 
29 877 
31 878 
33 515 
34 788 
35 698 
36 244 
36 425 

29 
36 380 

181.9 
0 

933 

In conclusion, we have shown that the quantum algebra SU,(1,1) can be used for 
the description of vibrational spectra of diatomic molecules, in the same way as the 
quantum algebra SU,(2) can be used for the description of rotational spectra of 
molecules [I81 and nuclei [lS-171. The second-order Casimir operator of SU,(l, 1) 
corresponds to a special form of the Dunham expansion containing all powers of 
(U+$), while in the classical case of SU(1, l )  only the first two non-vanishing powers 
of (U+$) are obtained [22-281. 

In the classical case the relation between the second-order Casimir operator of 
SO(2, 1) and the eigenvalues of the Morse potential is known [28]. It is interesting to 
find the relation between the second-order Casimir operator of SU,(I, 1) and the 
eigenvalues of the Morse potential in the quantum case. Forthe latter, the q-Schr6dinger 
equation [41] for the Morse potential should be solved. In addition, it is worth 
evaluating dissociation rates for the Morse potential in the quantum case, by general- 
izing the procedure outlined in [42]. It is also of interest to study the q-generalization 
of the U(3) limit of the vibron model for diatomic molecules [35], since its O(4) limit 
is equivalent to the SO(2, 1) approach of [28], which was generalized here. This opens 
the question of studying in addition the q-generalization of the vibrational, rotational 
and y-unstable limits of the interacting Boson model ( I B M )  of nuclear structure ([43], 
for recent overviews see [44,45]). Work in these directions is in progress. 

Support from the Greek Ministry of Research and Technology (DB) and the Bulgarian 
Ministry of Science and Higher Education (PPR) is gratefully acknowledged. 
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